2011 Vol. 13, No. 8 1992–1995

Enantioselective Syntheses of syn- and $anti-\beta$ -Hydroxyallylsilanes Via Allene Hydroboration-Aldehyde Allylboration Reactions

Ming Chen and William R. Roush*

Department of Chemistry, Scripps Florida, Jupiter, Florida 33458, United States roush@scripps.edu

Received February 11, 2011

ABSTRACT PhMe₂Si 5 (d|pc)₂BH, -40 °C toluene PhMe₂Si 9Z--kinetic >-40 °C PhMe₂Si 9E--thermodynamic >20:1 d.s. 84-87% ee | RCHO -78 °C OH R Silva Ph Silva Ph

The kinetic hydroboration of allenylsilane 5 with $(^d\text{lpc})_2\text{BH}$ at $-40\,^\circ\text{C}$ provides allylborane 9Z with \geq 12:1 selectivity. When the hydroboration is performed at temperatures above $-40\,^\circ\text{C}$, 9Z isomerizes to the thermodynamically more stable allylborane 9E with >20:1 selectivity. Subsequent treatment of 9Z or 9E with aldehydes at $-78\,^\circ\text{C}$ provides syn- or anti- β -hydroxyallylsilanes, 7 or 8, respectively.

Syn- and anti-β-hydroxyallylsilanes are versatile and important building blocks in organic synthesis¹ and have been used in syntheses of a variety of natural products.^{2,3} Consequently, extensive efforts have been devoted to the

(1) (a) Fleming, I. *Org. React.* **1989**, *37*, 57. (b) Masse, C. E.; Panek, J. S. *Chem. Rev.* **1995**, 95, 1293. (c) Fleming, I.; Barbero, A.; Walter, D. *Chem. Rev.* **1997**, 97, 2063. (d) Chabaud, L.; James, P.; Landais, Y. *Eur. J. Org. Chem.* **2004**, 3173. (e) Bates, R. H.; Chen, M.; Roush, W. R. *Curr. Opin. Drug Discovery Dev.* **2008**, *11*, 778.

(2) (a) Sparks, M. A.; Panek, J. S. *J. Org. Chem.* **1991**, *56*, 3431. (b) Panek, J. S.; Yang, M. *J. Am. Chem. Soc.* **1991**, *113*, 9868. (c) Huang, H.; Panek, J. S. *J. Am. Chem. Soc.* **2000**, *122*, 9836. (d) Wu, J.; Chen, Y.; Panek, J. S. *Org. Lett.* **2010**, *12*, 2112. For recent applications: (e) Zhang, Y.; Panek, J. S. *Org. Lett.* **2009**, *11*, 3366. (f) Wrona, I. E.; Gozman, A.; Taldone, T.; Chiosis, G.; Panek, J. S. *J. Org. Chem.* **2010**, *75*, 2820.

(3) (a) Roberson, C. W.; Woerpel, K. A. *J. Org. Chem.* **1999**, *64*, 1434. (b) Smitrovich, J. H.; Woerpel, K. A. *Synthesis* **2002**, 2778. (c) Romero, A.; Woerpel, K. A. *Org. Lett.* **2006**, *8*, 2127. (d) Leonard, N. M.; Woerpel, K. A. *J. Org. Chem.* **2009**, *74*, 6915.

(4) (a) Chan, T. H.; Wang, D. Chem. Rev. 1995, 95, 1279. (b) Lombardo, M.; Trombini, C. Chem. Rev. 2007, 107, 3843 and references cited therein. (c) Yamamoto, Y.; Saito, Y.; Maruyama, K. J. Chem. Soc., Chem. Commun. 1982, 1326. (d) Reetz, M. T.; Wenderoth, B. Tetrahedron Lett. 1982, 23, 5259. (e) Ikeda, Y.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1986, 59, 657. (f) Landais, Y.; Mahieux, C.; Schenk, K.; Surange, S. S. J. Org. Chem. 2003, 68, 2779.

stereocontrolled synthesis of β -hydroxyallylsilanes. $^{4-6}$ Aldehyde allylation using γ -silylallylmetal reagents is the most widely adopted procedure for the synthesis of $anti-\beta$ -hydroxyallylsilanes. 7,8 Several enantioselective γ -silylallylboron and titanium advance in the catalytic asymmetric synthesis of $anti-\beta$ -hydroxyallylsilanes has also been achieved. However, compared to the methods available to prepare $anti-\beta$ -hydroxyallylsilanes,

(6) For other examples of enantioselective synthesis of β -hydroxyallylsilanes using γ -silylallylmetal reagents, see: (a) Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F. *J. Am. Chem. Soc.* **1992**, *114*, 2321. (b) Adam, J.-M.; Fays, L.; Laguerre, M.; Ghosez, L. *Tetrahedron* **2004**, *60*, 7325. (c) Han, S. B.; Gao, X.; Krische, M. J. *J. Am. Chem. Soc.* **2010**, *132*, 9153.

⁽⁵⁾ For examples of enantioselective synthesis of β -hydroxyallylsilanes using γ -silylallylboron reagents: (a) Roush, W. R.; Grover, P. T.; Lin, X. Tetrahedron Lett. 1990, 31, 7563. (b) Barrett, A. G. M.; Malecha, J. W. J. Org. Chem. 1991, 56, 5243. (c) Hunt, J. A.; Roush, W. R. Tetrahedron Lett. 1995, 36, 501. (d) Roush, W. R.; Pinchuk, A. N.; Micalizio, G. C. Tetrahedron Lett. 2000, 41, 9413. (e) Lira, R.; Roush, W. R. Org. Lett. 2007, 9, 4315. (f) Kister, J.; DeBaillie, A. C.; Lira, R.; Roush, W. R. J. Am. Chem. Soc. 2009, 131, 14174. (g) Binanzer, M.; Fang, G. Y.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2010, 49, 4264. (h) Robinson, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2010, 49, 6673.

stereoselective synthesis of the diastereomeric syn- β -hydroxyallylsilane isomers, and especially enantioselective syntheses of the syn isomers, ^{5e,7f} largely remains an unsolved problem due to the facile isomerization of (Z)- and (E)- γ -silylallylmetal reagents. ^{4,9,10} Therefore, development of a stereocontrolled method for synthesis of chiral, nonracemic (Z)- γ -silylallylmetal reagents and the corresponding syn- β -hydroxyallylsilanes via enantioselective aldehyde allylation remains an important goal. Accordingly, we have developed and report herein a simple, one step, diastereo- and enantioselective synthesis of syn- β -hydroxyallylsilanes via a highly stereoselective allene hydroboration-aldehyde allylboration reaction sequence.

We recently reported that hydroboration of allenylstannane 1 with diisopinocampheylborane [(d Ipc)₂BH] initially forms (Z)- γ -stannylallylborane 2 as the kinetic product, and that 2 isomerizes rapidly through a highly diastereoselective 1,3-boratropic shift to give the thermodynamically stable α -stannylallylborane 3 (eq 1, Figure 1). Subsequent allylboration of aldehydes with 3 gave (E)- δ -stannyl-homoallylic alcohols 4 in good yields and excellent enantioselectivities. With the objective to synthesize the potentially environmentally benign (E)- δ -silyl-homoallylic alcohols 6, we decided to study the hydroboration of allenylsilane 5^{12} (eq 2, Figure 1).

-78 °C

Figure 1. Hydroboration of allenylstannane 1 and planned hydroboration of allenylsilane 2 with $({}^{d}Ipc)_{2}BH$.

-40 to -20 °C

In initial experiments, treatment of allenylsilane 5 with $(^{d}$ Ipc)₂BH in toluene at -40 °C for 5 h followed by addition of hydrocinnamaldehyde at -78 °C provided the β -hydroxyallylsilane 7a in 76% yield, 87% ee, and 14:1 d.s. and not the originally targeted homoallylic alcohol 6 (entry 1, Table 1). After careful comparison of the ¹H NMR spectra of the reaction product with the data reported in the literature for 7a, 5e, 7f the major product was determined to be the syn- β -hydroxyallylsilane diastereomer (7a). The minor product is the anti-isomer 8a. Application of this procedure to the (Z)- γ -silvlallylboration of a variety of other aldehydes (entries 2–6, Table 1) provided syn- β -hydroxyallylsilanes **7b**−**7f** in 67–80% yields with \ge 12:1 diastereoselectivities and 84-87% ee. The absolute stereochemistry of the secondary hydroxyl groups of 7a-7f were assigned by using the modified Mosher ester analysis. 13 The regioisomeric (E)- δ -silyl-homoallylic alcohols **6** were not observed in these experiments.

The diastereoselectivity of this reaction sequence proved to be highly dependent on experimental conditions. When the hydroboration of **5** was performed at -20 °C followed by addition of hydrocinnamaldehyde at -78 °C, a 2:1 mixture of *syn*- and *anti-\beta*-hydroxyallylsilanes **7a** and **8a** was obtained in 81% yield. Similarly, when the hydroboration step was carried out at -30 °C, a 3:1 mixture of **7a** and **8a** was obtained in 77% yield. Hydroboration of **5** at -40 °C for 12 h also led to the formation of a 5:1 mixture of **7a** and **8a**. When the hydroboration step was carried out at temperatures below -40 °C (e.g., -50 °C for 5 h), the subsequent allylboration of hydrocinnamaldehyde at -78 °C provided **7a** as the only product, albeit in diminished yield (24%), owing to incomplete allene hydroboration.

These results indicate that at temperatures below $-40\,^{\circ}\text{C}$ the kinetic hydroboration adduct 9Z, produced in the reaction of 5 with $(^{d}\text{Ipc})_{2}\text{BH}$, does not rapidly isomerize to the thermodynamically more stable allylborane 9E (Scheme 1). While the 1,3-boratropic shifts of the $(^{d}\text{Ipc})_{2}\text{B}-\text{group}$ is known to be slow for γ,γ -disubstituted allylboranes, this kinetically controlled hydroboration of allenylsilane 5 represents a rare case that a $(Z)-\gamma$ -substituted allylborane

Org. Lett., Vol. 13, No. 8, 2011

⁽⁷⁾ For selected synthetic applications of β -hydroxyallylsilanes: (a) Micalizio, G. C.; Roush, W. R. Org. Lett. **2000**, 2, 461. (b) Roush, W. R.; Dilley, G. J. Synlett **2001**, 955. (c) Heo, J.-N.; Micalizio, G. C.; Roush, W. R. Org. Lett. **2003**, 5, 1693. (d) Shotwell, J. B.; Roush, W. R. Org. Lett. **2004**, 6, 3865. (e) Tinsely, J. M.; Roush, W. R. J. Am. Chem. Soc. **2005**, 127, 10818. (f) Tinsley, J. M.; Mertz, E.; Chong, P. Y.; Rarig, R.-A. F.; Roush, W. R. Org. Lett. **2005**, 7, 4245. (g) Mertz, E.; Tinsley, J. M.; Roush, W. R. J. Org. Chem. **2005**, 70, 8035. (h) Va, P.; Roush, W. R. J. Am. Chem. Soc. **2006**, 128, 15960. (i) Huh, C. W.; Roush, W. R. Org. Lett. **2008**, 10, 3371.

⁽⁸⁾ For other selected applications of β -hydroxyallylsilanes: (a) Paterson, I.; Findlay, A. D.; Anderson, E. A. *Angew. Chem., Int. Ed.* **2007**, 46, 6699. (b) Kishi, N.; Maeda, T.; Mikami, K.; Nakai, T. *Tetrahedron* **1992**, 48, 4087. (c) Vincent, G.; Mansfield, D. J.; Vors, J.-P.; Ciufolini, M. A. *Org. Lett.* **2006**, 8, 2791. (d) Beignet, J.; Jervis, P. J.; Cox, L. R. *J. Org. Chem.* **2008**, 73, 5462. (e) Peroche, S.; Remuson, R.; Gelas-Mialhe, Y.; Gramain, J. C. *Tetrahedron Lett.* **2001**, 42, 4617. (f) Ducray, R.; Ciufolini, M. A. *Angew. Chem., Int. Ed.* **2002**, 41, 4688.

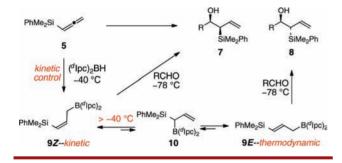
^{(9) (}a) Hancock, K. G.; Kramer, J. D. J. Am. Chem. Soc. 1973, 95, 6463. (b) Kramer, G. W.; Brown, H. C. J. Organomet. Chem. 1977, 132, 9. (c) Hoffmann, R. W.; Zeiss, H. J. J. Org. Chem. 1981, 46, 1309. (d) Henriksen, U.; Snyder, J. P.; Halgren, T. A. J. Org. Chem. 1981, 46, 3767. (e) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1985, 107, 2564. (f) Wang, K. K.; Gu, Y. G.; Liu, C. J. Am. Chem. Soc. 1990, 112, 4424. (g) Gu, Y. G.; Wang, K. K. Tetrahedron Lett. 1991, 32, 3029. (h) Brown, H. C.; Narla, G. J. Org. Chem. 1995, 60, 4686. (i) Narla, G.; Brown, H. C. Tetrahedron Lett. 1997, 38, 219. (j) Fang, G. Y.; Aggarwal, V. K. Angew. Chem.; Int. Ed. 2007, 46, 359. (k) Canales, E.; González, A. Z.; Soderquist, J. A. Angew. Chem.; Int. Ed. 2007, 46, 397. (l) González, A. Z.; Román, J. G.; Alicea, E.; Canales, E.; Soderquist, J. A. J. Am. Chem. Soc. 2009, 131, 1269.

⁽¹⁰⁾ One notable exception to the rapid isomerization of (*Z*)-and (*E*)-crotylborane isomers has been reported by Soderquist: Burgos, C. H.; Canales, E.; Matos, K.; Soderquist, J. A. *J. Am. Chem. Soc.* **2005**, *127*, 8044. Also see ref 5f.

^{(11) (}a) Flamme, E. M.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 13644. (b) Chen, M.; Handa, M.; Roush, W. R. J. Am. Chem. Soc. 2009, 131, 14602. (c) Ess, D. H.; Kister, J.; Chen, M.; Roush, W. R. Org. Lett. 2009, 11, 5538. (d) Chen, M.; Ess, D. H.; Roush, W. R. J. Am. Chem. Soc. 2010, 132, 7881. (e) Stewart, P.; Chen, M.; Roush, W. R.; Ess, D. Org. Lett. 201110.1021/ol2001599. (f) Kister, J.; Nuhant, P.; Lira, R.; Sorg, A.; Roush, W. R. Org. Lett. 2011, in press.

^{(12) (}a) Myers, A. G.; Zheng, B. Org. Synth. 1999, 76, 178. (b) Li, Z.; Yang, C.; Zheng, H.; Qiu, H; Lai, G. J. Organomet. Chem. 2008, 693, 3771. (c) Fandrick, D. R.; Reeves, J. T.; Tan, Z.; Lee, H.; Song, J. J.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2009, 11, 5458.

^{(13) (}a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. **1973**, 95, 512. (b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. **1991**, 113, 4092.


Table 1. Synthesis of $syn-\beta$ -Hydroxyallylsilanes 7 via Kinetically Controlled Hydroboration of Allenylsilane $\mathbf{5}^a$

entry	RCHO	product	yield	d.s.	$\% ee^b$
1	Ph(CH ₂) ₂ CHO	7a	76%	14:1	87
2	$PhCH_2CHO$	7 b	70%	12:1	87
3	PhCHO	7c	80%	18:1	86
4	CyCHO	7d	67%	20:1	84
5	TBSO(CH ₂) ₂ CHO	7e	71%	15:1	84
6	${ m TBSOCH_2CHO}$	7f	72%	14:1	87

^a Reactions were performed by treating 5 with (d Ipc)₂BH (0.9 equiv) in toluene at −40 °C for 5 h, followed by the addition of RCHO (0.8 equiv) at −78 °C. The mixture was then allowed to stir at −78 °C for 12 h. The reactions were subjected to a standard workup (NaHCO₃, H₂O₂) at 0 °C prior to product isolation. ^b Determined by Mosher ester analysis. ¹³

can be obtained in good Z/E ratio via hydroboration of a monosubstituted allene with dialkylboranes such as (Ipc)₂BH. Most (Z)-crotylboranes are configurationally unstable at temperatures above $-60\,^{\circ}\text{C}$. Allylboranes incorporating the Soderquist borane (10-TMS-9-borabicyclo[3.3.2]decanyl) auxiliary constitute the only general exception. 10

Scheme 1. Proposed Kinetic Hydroboration of **5** and Thermodynamically Controlled Allylborane Isomerization

As shown in Scheme 1, the kinetic adduct 9Z can isomerize to the more stable allylborane 9E through a reversible 1,3-boratropic shift^{9,11} at temperatures above $-40\,^{\circ}\text{C}$, presumably via the intermediacy of 10. Subsequent allylboration of aldehydes with 9E should allow access to the diastereomeric *anti-\beta-*hydroxyallylsilanes 8 (which we have previously demonstrated by an alternative method). Subsequent allylborated, when the hydroboration of allenylsilane 5 was performed at $-40\,^{\circ}\text{C}$ with the solution being allowed to warm to $0\,^{\circ}\text{C}$ over 5 h, addition of hydrocinnamaldehyde to the resulting allylborane at $-78\,^{\circ}\text{C}$ provided *anti-\beta-*hydroxyallylsilanes 8a with >20:1 dr (8a:7a) in 87% yield and 86% ee (Table 2, entry 1). The hydroboration-

isomerization-allylboration sequence was applied to a variety of aldehydes (Table 2). In all cases, *anti-\beta*-hydro-xyallylsilanes **8a**–**f** were obtained in 80–91% yield and 83–87% ee with > 20:1 diastereoselectivity.

To gain insight into the proposed reaction pathways, we carried out ¹H NMR studies of the hydroboration of allenylsilane 5 with (^dIpc)₂BH at -20 and 0 °C.¹⁴ As

Table 2. Synthesis of *anti-\beta*-Hydroxyallylsilanes **8** via Allene Hydroboration and Allylborane Isomerization^a

entry	RCHO	product	yield	d.s.	$\%~{\rm ee}^b$
1	Ph(CH ₂) ₂ CHO	8a	87%	>20:1	86
2	PhCH ₂ CHO	8b	90%	>20:1	87
3	PhCHO	8c	83%	>20:1	83
4	CyCHO	8d	80%	>20:1	86
5	$TBDPSO(CH_2)_2CHO$	8e	91%	>20:1	85
6	${ m TBSOCH_2CHO}$	8 f	87%	>20:1	84

^a Reactions were performed by treating **5** with (^dIpc)₂BH (0.9 equiv) in toluene at −40 °C and warmed to 0 °C over 5 h, followed by the addition of RCHO (0.8 equiv) at −78 °C. The mixture was then allowed to stir at −78 °C for 12 h. The reactions were subjected to a standard workup (NaHCO₃, H₂O₂) at 0 °C prior to product isolation. ^b Determined by Mosher ester analysis. ¹³

illustrated in Figure 2, hydroboration of 5 with $(^d\mathrm{Ipc})_2\mathrm{BH}$ at $-20~^\circ\mathrm{C}$ initially generates (Z)- γ -silylallylborane 9Z ($J=12.8~\mathrm{Hz}$). Allylborane 9Z isomerizes at $-20~^\circ\mathrm{C}$ (monitored over 150 min) to (E)- γ -silylallylborane 9E ($J=18.4~\mathrm{Hz}$). This isomerization is complete in about 60 min when the reaction mixture is allowed to warm to 0 $^\circ\mathrm{C}$. The fleeting intermediate α -silylallylborane 10 was not observed during these experiments.

Strikingly, while the hydroboration of allenylstannane 1 with $(^d\mathrm{Ipc})_2\mathrm{BH}$ provides α -stannylallylborane 3 as the most stable component of the equilibrating mixture, 15 the resting state of the hydroboration of allenylsilane 5 is (Z)- or (E)- γ -silylallylboranes, 9Z or 9E, depending on the temperature of the hydroboration (Figure 3). Although it is well-known that both $R_3\mathrm{Si}-$ and $R_3\mathrm{Sn}-$ can stabilize a β -carbocation, 16 the capacity of these two groups to stabilize the β -carbocation is clearly different. For the intermediate α -stannylallylborane 3, the hyperconjugative interaction between the Bu₃Sn- group and the boron

1994 Org. Lett., Vol. 13, No. 8, 2011

⁽¹⁴⁾ We were not able to perform NMR studies at -40 °C due to the low solubility of (d Ipc)₂BH in d_8 -toluene at this temperature. (d Ipc)₂BH is not fully soluble even at -20 °C, consequently signal resolution is poor at early stages of the reaction.

⁽¹⁵⁾ See SI1 of ref 11d for details.

^{(16) (}a) Davis, D. D.; Gray, C. E. J. Org. Chem. 1970, 35, 1303. (b) Jerkunica, J. M.; Traylor, T. G. J. Am. Chem. Soc. 1971, 93, 6278. (c) Wierschke, S. G.; Chandrasekhar, J.; Jorgensen, W. L. J. Am. Chem. Soc. 1985, 107, 1496. (d) Lambert, J. B.; Wang, G. T.; Finzel, R. B. J. Am. Chem. Soc. 1987, 109, 7838. (e) Lambert, J. B.; Wang, G. T.; Teramura, D. H. J. Org. Chem. 1988, 53, 5422.

atom (isoelectronic to a carbocation) must be strong enough to override the steric repulsion between the Bu₃Sn- and the (d Ipc)₂B- units. The relatively long Sn-C bond (2.20 Å in 3)^{11e} might also be beneficial. On the other hand, for the intermediate α -silylallylborane 10, it appears that the steric repulsion between the PhMe₂Si-group and the (d Ipc)₂B- unit overrides the hyperconjugative stabilization. The relatively shorter Si-C bond (estimated to be 1.85 Å) and the size of PhMe₂Si-group presumably contribute to the steric effect, such that 9Z or 9E are much more stable than 10. These conclusions are supported by a recent computational study. The

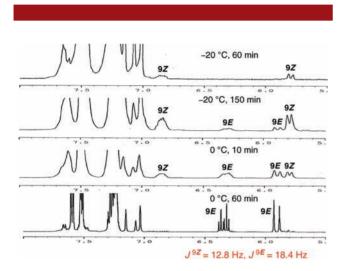
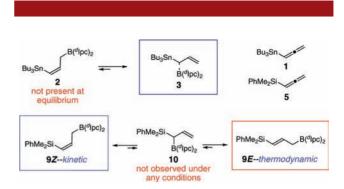



Figure 2. ¹H NMR studies of hydroboration of allenylsilane 5 in d_8 -toluene. ¹H resonances in the olefinic region (8–5.5 ppm) are displayed in the partial spectra.

In conclusion, we have developed stereoselective syntheses of (Z)- and (E)- γ -silylallylboranes 9Z and 9E via hydroboration of allenylsilane 5 with (d Ipc)₂BH. At

Figure 3. Comparison of the hydroboration-isomerization pathways for allenylstannane 1 and allenylsilane 5.

temperatures below -40 °C, the hydroboration reaction proceeds under kinetic control to give 9Z with good selectivity. The normally facile 1,3-boratropic shift⁹ is slow at -40 °C in the case of 9Z. However, isomerization readily occurs at temperatures above -40 °C, and complete isomerization of 9Z to 9E is observed at 0 °C. Thus, by appropriate control of the hydroboration conditions, highly diastereo- and enantioselective syntheses of either *syn*- or *anti-\beta*-hydroxyallylsilanes, 7 or 8, can be achieved via aldehyde allylboration reaactions of 9Z and 9E, respectively.

Acknowledgment. Financial support provided by the National Institutes of Health (GM038436) is gratefully acknowledged.

Supporting Information Available. Experimental procedures and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

Org. Lett., Vol. 13, No. 8, 2011